-1 CLOUD NATIVE

s COMPUTING FOUNDATION

kubernetes

&

doc\(Q(

Presentation by
a LABORATORY

Containers

HISTORY T
ﬁo;::ﬂ amp =g ﬁ "(‘

IAAS PAAS SAAS BAAS MAAS FAAS CLOUD-NATIVE SERVERLESS

PRESENTATION
STRUGRURE

adie e

Kubernetes Conclusions

HISTORY

IAAS PAAS SAAS BAAS MAAS FAAS CLOUD-NATIVE SERVERLESS

https://loige.co/from-bare-metal-to-serverless/
https://hackernoon.com/why-the-fuss-about-serverless-4370b1596da0

~e

-

-

d

THE

-~

-

<

- BARE ME

TAL

-

»

AGE

1999

Marc Ben .
launching rce

MTTR

mean time to recovery

vimware

ortior

reas F2 to enter SETUP, Fl1Z2 for Network Boot, ESC for Boot HNenu

2001, VMWare releases ESXi
and server virtualization becomes a thing

i

&
2002-2006 Amazon Web Services) 4
EC2 (Virtual Machine service), S3 (Scalablq_sfér,age service) and SQS (message queuing system)

o
T haSOTY

THE

PaaS

AGE

2009, Adam Wiggins
Heroku

Database-as-a-Service

Qplin
Firebase \
-~

Hype-cycle

expectations On the At the Sliding Into Climbing Entering
‘ Rise Peak the Trough the Slope the Plateau
Activity beyond
Supplier early adopters
proliferation
Negative press begins
Mass media High-growth adoption
hype begins Supplier consolidation E;‘:ﬁ: :t:tr::;;(ll% to 30%
Farly a.udopters and failures audience has adopted
investigate Second/third the innovation
First-generation rounds of . Methodologies and best
products, high price, venture capital practices developing
funding

lots of customization
needed

Less than 5 percent of
the potential audience
has adopted fully

Third-generation products,

Startup companies
out of the box, product

first round of venture

capital funding suites
Second-generation
products, some services
Technology Peak of Inflated Trough of Plateau of
Trigger Expectations Disillusionment Slope of Enlightenment p o4y ctivity

r

time

2012

Pets or Cattle?

How to Explain Why Cloud is Different

Hint: it’s about uniqueness

Scale-up or Scale-out?

Cloudscaling
— —
M|CrOSOﬂ Scale-out, not UP in Cloud CERN

— m Service Models a——

Red Hat — =
Rackspace <— Scalr

Pt s b
t —
Seade 4 veabe Bus === E T VT
Sevat m - - - - "
= T g £ A ;\

Ui’}
-

In the old way of doing things, we treat
our servers like pets. For example,
‘Frodo’ the mail server. If Frodo goes
‘ down, it's all hands on deck. The CEO
can't get his email and it's the end of
the world.

2012

In the new way, servers are numbered,
ike cattle in a herd. For example, ’ ,
www001 to www100. When one server
goes down, it's taken out back, shot,
and replaced on the line.

— Randy Bias (many hundreds of times from 2012-2016)

We still haven’t fixed
the deployment times!

= B =

apps are monoliths
and this is a problem

Separation of concerns / Microservices

Containers...

DDDDDD

i event-driven computing Service for
dynamic applications

2018

Attributes Of a Serverless Product

* No management of Server Hosts or
Processes

- Self auto provision & auto-scale based on
load

. Costs based on actual, precise, usage

June

2018

#DevOpsDays

¥ scalesto support the
rate;of incoming requests wi

.L out IQQU].I g you

torconfigure anything. There isne limitto the

number of requests your eede can handle.

AWS | LAMBDA FCATUNREC PACCT

1
—
-
oo - /.i
....... ' = /,\.; — { i
———en | v
N
- 7 <
~ — /—'- B

Deployment Abstractions

Less abstracted < » More abstracted
Concept "Bare metal” Virtual private | |Infrastructure-as-| | Platform-as-a- Serverless
servers servers (VPS) | |a-service (IaaS) Service (PaaS) Compute
Implementation | | Dell, Lenovo, Linode, Digital || AWS, Azure, Heroku, CodeStar, | | AWS Lambda,
Examples | | Build-your-own | | Ocean, OVH Google Cloud PythonAnywhere Azure Functions
The further right means giving more control and trust to a platform. There are
tradeoffs along the entire deployment spectrum so left or right is not inherently better.

‘
R men
Serverless Computing:

Moving from DevOps to NoOps
e v

Sam Newman and Associates Ltd. b

It’'s all about
abstractions

ttps://samnewman 10/

It’s a developer-focused
wave of services

B¢ follows...

aaaaaaaaaa

Containers

T
¥

High level approach:
it's a lightweight VM

e [can get ashell on it
(through SSH or otherwise)

e [t "feels" like a VM:

©c O O O O O

OWN process space
own network interface
can run stuff as root
can install packages
can run services

can mess up routing, iptables ...

@jpetazzo

Low level approach:
it's chroot on steroids

e [t's not quite like a VM:

o uses the host kernel

o can't boot a different OS

o can't have its own modules
o doesn't need init asPID 1

o doesn't need syslogd, cron...

e [t'sjusta bunch of processes visible on the host machine
(contrast with VMs which are opaque)

@jpetazzo

Linux Containers

Kernel namespaces: sandboxing processes
from one another

Control Groups (cgroups): control process
resource allocations

Security: capabilities drop (seccomp),

Mandatory access control (SELinux,
/ Apparmor)

Cgroups = limits how much you can use;
namespaces = limits what vou can see (and therefore use)

@jorgemoralespou

LXC

...ISs a system container runtime designed to execute " ", which
generally consist of a full operating system image. An LXC process, in most common use
cases, such as Debian, Fedora, Arch, etc, and a user will

interact with it similarly to how they would with a Virtual Machine image.

LXD

...1s similar to LXC but is a which forks a monitor and container
process. This ensures the LXD daemon is not a central point of failure and containers
continue running in case of LXD daemon failure. All other details are nearly identical to

LXC.

Container Wars

“Docker’s architecture is fundamentally flawed”

At the heart of Docker is a daemon process that is the starting
point of everything Docker does. The docker executable is merely a
REST client that requests the Docker daemon to do its work. Critics

of Docker say this is not very Linux-like.

Container Wars

rkt

O e
orke LT
L

>1.0

docker

<1.11.0

systemd

s

docker run nginx

—-

Docker daemon

¢ |

application

S A S S A S Sy A S e S ———
]

docker

>1.11.0

runC is a low-level
container runtime and
mad docker run nginx
=M Docker Engine

an implementation of
the OCl spec. runC
exposes and expects a
B iners
L. application

user to understand
low-level details of the
host operating system
and configuration

containerd is a
daemon to
control runC.

https://github.com/opencontainers/runc
https://github.com/opencontainers/specs
https://containerd.tools/
https://github.com/opencontainers/runc

Kubernetes

Kubernetes is a container
management system

docker,
@ conid

Kubernetes is a container
management system platform

docker,
@& conid

Remember Container runtimes?

Docker 1.0 Kubernetes 1.0: Supports Kubernetes 1.3: Supports
Docker containers Docker and Rkt containers
Dec Feb
2074 2016
Rkt 0.1.0 Rkt 1.0

@jorgemoralespou

and code got messy

@jorgemoralespou

Standardize containers

@ OPE

e Runtime spec (runc = Reference implementation)
e Image spec
e Distribution spec (proposal)

CONTAINER
INITIATIVE

@jorgemoralespou

Use APl/Interfaces to Container Runtimes

KUBELET

.

/

l

l

KUBELET

CONTAINER RUNTIME INTERFACE (CRI)

OCI-RUNTIME
[DOCKERD J [RKT J [FRAKTI] [RUNC]

@jorgemoralespou

Standardization became a fact

Docker 1.0 Kubernetes 1.0: Supports Kubernetes 1.3: Supports Kubernetes 1.7: CRI
Docker containers Docker and Rkt containers support GA
Feb
2016
Rkt 0.1.0 Rkt 1.0 Kubernetes 1.5: Container
Runtime Interface (CRI)
alpha

@jorgemoralespou

What is Container Runtime Interface (CRI)?

A gRPC interface and a group of libraries

Enables Kubernetes to use a wide variety of container runtimes
Introduced in Kubernetes 1.5

GA in Kubernetes 1.7

CRI shim

CRI . .

A= B9
; server § [container

@jorgemoralespou

CRI Implementations

Cri-o Enntainerm

cri-containerd

dockershim

MIRANTIS

virtlet @jorgemoralespou

frakti

Why Use Container Orchestrators?

Though we can argue that containers at scale can be maintained
manually, or with the help of some scripts, container
orchestrators can make things easy for operators.

Container orchestrators can:

* Bring multiple hosts together and make them part of a
containers to run on different hosts
* Help containers running on one host
in the cluster
* Bind containers and storage
* Bind containers of similar type to a higher-level construct, like , SO we
don't have to deal with individual containers
* Keep resource usage in-check, and optimize it when necessary
* Allow secure access to applications running inside containers.

With all these built-in benefits, it makes sense to use container orchestrators to
manage containers.

Basic things we can ask Kubernetes to do

Start 5 containers using image atseashop/api:v1.3

Place an internal load balancer in front of these containers

Start 10 containers using image atseashop/webfront:v1.3

Place a public load balancer in front of these containers

It's Black Friday (or Christmas), traffic spikes, grow our cluster and add containers
New release! Replace my containers with the new image atseashop/webfront:v1.4

Keep processing requests during the upgrade; update my containers one at a time

@jpetazzo

Other things that Kubernetes can do for us

Basic autoscaling

Blue/green deployment, canary deployment

Long running services, but also batch (one-off) jobs

Overcommit our cluster and evict low-priority jobs

Run services with stateful data (databases etc.)

Fine-grained access control defining what can be done by whom on which
resources

Integrating third party services (service catalog)

Automating complex tasks (operators) o
jpetazzo

Declarative vs imperative

Our container orchestrator puts a very strong emphasis on being declarative

Declarative:

Imperative:

Declarative seems simpler at first ...

... As long as you know how to brew tea

@jpetazzo

Declarative vs imperative in Kubernetes

Virtually everything we create in Kubernetes is created from a

Watch for the spec fields in the files later!

The spec describes how we want the thing to be

Kubernetes will reconcile the with the spec (technically, this is done
by a number of controllers)

When we want to change some resource, we update the spec ()

Kubernetes will then converge that resource

@jpetazzo

Kubernetes network model

* TL,DR:

Our cluster (nodes and pods) is one

* |n detail:
e all must be able to . without NAT
e all must be able to . without NAT

must be able to reach each other, without NAT
e each pod is aware of its IP address (no NAT)

 Kubernetes doesn't mandate any particular implementation

@jpetazzo

Kubernetes network model: the good

Everything can reach everything

No address translation

No port translation

No new protocol

Pods cannot move from a node to another and keep their IP address

IP addresses don't have to be "portable"” from a node to another (We can use e.g.
a subnet per node and use a simple routed topology)

The specification is simple enough to allow

@jpetazzo

Kubernetes network model: the less good

Everything can reach everything

e if youwant , you need to add
* the network implementation that you use needs to them
There are literally out there (15 are listed in the

Kubernetes documentation)

It looks like you have a level 3 network, but it's only level 4 (The spec requires UDP
and TCP, but not port ranges or arbitrary IP packets)

kube-proxy is on the data path when connecting to a pod or container, and it's

(relies on userland proxying or iptables)
@jpetazzo

Kubernetes network model:

 Don't worry about the warning about kube-proxy performance
* Unless you:
* routinely saturate 10G network interfaces
* count packet rates in millions per second
* run high-traffic VOIP or gaming platforms
* do weird things that involve millions of simultaneous connections (in which

case you're already familiar with kernel tuning)

@jpetazzo

Conclusions

Thoughts from one of the creators of Kubernetes

Joe Beda @ @jbeda - May 8 v
First off: Kubernetes *is* a complex system. It does a lot and brings new
abstractions. Those abstractions aren't always justified for all problems. I'm sure

that there are plenty of people using Kubernetes that could get by with
something simpler. /3

Joe Beda @ @jbeda - May 8 v
When you create a complex deployment system with Jenkins, Bash, Puppet/Chef
/Salt/Ansible, AWS, Terraform, etc. you end up with a unique brand of complexity
that *you* are comfortable with. It grew organically so it doesn't feel complex. /6

Joe Beda @ @jbeda - May 8 v
This is a place where, IMO, Kubernetes adds value. Kubernetes provides a set of
abstractions that solve a common set of problems. As people build
understanding and skills around those problems they are more productive in
more situations. /8

Abstractions are NOT
a hew thing,

It’s how CS evolved

BUT...

Architecture Astronauts

When you go too far up, abstraction-
wise, you run out of oxygen. Sometimes
smart thinkers just don’t know when to
stop, and they create these absurd, all-
encompassing, high-level pictures of the
universe that are all good and fine, but

don’t actually mean anything at all.

2001, Joel Spolsky
Co-founder @stackoverflow @trello

RFC 1925

1 April 1996

{4

(6) It 1s easier to move a problem around (for example,
by moving the problem to a different part of the overall
network architecture) than 1t 1s to solve 1t.

(6a) (corollary). It 1s always possible to add another

level of indirection. ”

FTSE

We can solve any problem by introducing an extra
level of indirection.

except for the problem of too many levels

Abstractions = Complexity

AL SOUM D209 2L ane S v N AR
-z ad - -_---b-—__———
a E

Kubernetes on

gl
_,').-n"-"'

& Pinned Tweet

. Sam Newman & @samnewman - Jan 14 v
’ | was in the middle of creating this slide (wrt patch hygiene) and had to stop half-

way through and ask myself - aren’t we all just making this worse?

“

K 7 g
>

Your App

Needs patching

Container OS

“

7)
)
)

Underlying Hardware

NN

Q s6 Nk @1k

lmmu(able deployments

* GPUs Drivers & the GPL
* (Cloud AP|s

* DevOps

That’s all...

Links

https://loige.co/from-bare-metal-to-serverless/

https://hackernoon.com/why-the-fuss-about-serverless-4370b1596da0

https://www.martinfowler.com/articles/serverless.html

https://www.slideshare.net/randybias/the-history-of-pets-vs-cattle-and-using-it-properly

https://www.slideshare.net/spnewman/what-is-this-cloud-native-thing-anyway

https://www.slideshare.net/spnewman/confusion-in-the-land-of-the-serverless

https://www.slideshare.net/JorgeMorales124/build-and-run-applications-in-a-dockerless-kubernetes-world

https://medium.com/@adriaandejonge/moving-from-docker-to-rkt-310dc9aec938

https://coreos.com/rkt/docs/latest/rkt-vs-other-projects.html

https://www.slideshare.net/jpetazzo/anatomy-of-a-container-namespaces-cgroups-some-filesystem-magic-linuxcon

https://loige.co/from-bare-metal-to-serverless/
https://hackernoon.com/why-the-fuss-about-serverless-4370b1596da0
https://www.martinfowler.com/articles/serverless.html
https://www.slideshare.net/randybias/the-history-of-pets-vs-cattle-and-using-it-properly
https://www.slideshare.net/spnewman/what-is-this-cloud-native-thing-anyway
https://www.slideshare.net/spnewman/confusion-in-the-land-of-the-serverless
https://www.slideshare.net/JorgeMorales124/build-and-run-applications-in-a-dockerless-kubernetes-world
https://medium.com/@adriaandejonge/moving-from-docker-to-rkt-310dc9aec938
https://coreos.com/rkt/docs/latest/rkt-vs-other-projects.html
https://www.slideshare.net/jpetazzo/anatomy-of-a-container-namespaces-cgroups-some-filesystem-magic-linuxcon

