
Presentation by

Jul 2018 | Anastasios Gogos

HISTORY

IAAS PAAS SAAS BAAS MAAS FAAS CLOUD-NATIVE SERVERLESS

Containers

Kubernetes Conclusions

PRESENTATION
STRUCTURE

HISTORY

IAAS PAAS SAAS BAAS MAAS FAAS CLOUD-NATIVE SERVERLESS

https://loige.co/from-bare-metal-to-serverless/
https://hackernoon.com/why-the-fuss-about-serverless-4370b1596da0

THE

BARE METAL
AGE

THE

SaaS
AGE

Marc Benioff, 1999
launching Salesforce

1999

MTTR
mean time to recovery

N+1 multiple power-sources capacity planning

2001, VMWare releases ESXi
and server virtualization becomes a thing

2001

THE

IaaS
AGE

2002-2006 Amazon Web Services
EC2 (Virtual Machine service), S3 (Scalable storage service) and SQS (message queuing system)

2006

THE

PaaS
AGE

2009, Adam Wiggins
Heroku

2009

Database-as-a-Service

2011, James Tamplin
Firebase

2011

Hype-cycle 2012

2012Pets or Cattle?

Scale-up or Scale-out? 2012

2012

We still haven’t fixed
the deployment times!

apps are monoliths
and this is a problem

Separation of concerns / Microservices

2013, Solomon Hykes
Docker

Containers… 2013

2014, Kubernetes

Containers at scale: Kubernetes 2014

2014, AWS Lambda

FaaS
2014

2018

2018
June

#DevOpsDays

2014, AWS Lambda

What is it all about?

It’s a developer-focused
wave of services

@samnewman

follows…

Containers

Treating containers like a black box will eventually leave you in the dark.
@kelseyhightower

@jpetazzo

@jpetazzo

…is a system container runtime designed to execute "full system containers", which
generally consist of a full operating system image. An LXC process, in most common use
cases, will boot a full Linux distribution such as Debian, Fedora, Arch, etc, and a user will
interact with it similarly to how they would with a Virtual Machine image.

LXC

LXD
…is similar to LXC but is a REST API on top of liblxc which forks a monitor and container
process. This ensures the LXD daemon is not a central point of failure and containers
continue running in case of LXD daemon failure. All other details are nearly identical to
LXC.

“Docker’s architecture is fundamentally flawed”

At the heart of Docker is a daemon process that is the starting
point of everything Docker does. The docker executable is merely a
REST client that requests the Docker daemon to do its work. Critics

of Docker say this is not very Linux-like.

Container Wars

Container Wars

runC is a low-level
container runtime and
an implementation of

the OCI spec. runC
exposes and expects a

user to understand
low-level details of the
host operating system

and configuration

containerd is a
daemon to

control runC.

https://github.com/opencontainers/runc
https://github.com/opencontainers/specs
https://containerd.tools/
https://github.com/opencontainers/runc

Kubernetes

Remember Container runtimes?

Though we can argue that containers at scale can be maintained
manually, or with the help of some scripts, container

orchestrators can make things easy for operators.

Why Use Container Orchestrators?

• Bring multiple hosts together and make them part of a cluster
• Schedule containers to run on different hosts
• Help containers running on one host reach out to containers running on other

hosts in the cluster
• Bind containers and storage
• Bind containers of similar type to a higher-level construct, like services, so we

don't have to deal with individual containers
• Keep resource usage in-check, and optimize it when necessary
• Allow secure access to applications running inside containers.

With all these built-in benefits, it makes sense to use container orchestrators to
manage containers.

Container orchestrators can:

• Start 5 containers using image atseashop/api:v1.3

• Place an internal load balancer in front of these containers

• Start 10 containers using image atseashop/webfront:v1.3

• Place a public load balancer in front of these containers

• It's Black Friday (or Christmas), traffic spikes, grow our cluster and add containers

• New release! Replace my containers with the new image atseashop/webfront:v1.4

• Keep processing requests during the upgrade; update my containers one at a time

Basic things we can ask Kubernetes to do

@jpetazzo

• Basic autoscaling

• Blue/green deployment, canary deployment

• Long running services, but also batch (one-off) jobs

• Overcommit our cluster and evict low-priority jobs

• Run services with stateful data (databases etc.)

• Fine-grained access control defining what can be done by whom on which

resources

• Integrating third party services (service catalog)

• Automating complex tasks (operators)

Other things that Kubernetes can do for us

@jpetazzo

• Our container orchestrator puts a very strong emphasis on being declarative

• Declarative:

• I would like a cup of tea.

• Imperative:

• Boil some water. Pour it in a teapot. Add tea leaves. Steep for a while. Serve in

cup.

• Declarative seems simpler at first ...

• ... As long as you know how to brew tea

Declarative vs imperative

@jpetazzo

• Virtually everything we create in Kubernetes is created from a spec

• Watch for the spec fields in the YAML files later!

• The spec describes how we want the thing to be

• Kubernetes will reconcile the current state with the spec (technically, this is done

by a number of controllers)

• When we want to change some resource, we update the spec (desired state)

• Kubernetes will then converge that resource

Declarative vs imperative in Kubernetes

@jpetazzo

• TL,DR:

Our cluster (nodes and pods) is one big flat IP network.

• In detail:

• all nodes must be able to reach each other, without NAT

• all pods must be able to reach each other, without NAT

• pods and nodes must be able to reach each other, without NAT

• each pod is aware of its IP address (no NAT)

• Kubernetes doesn't mandate any particular implementation

Kubernetes network model

@jpetazzo

• Everything can reach everything

• No address translation

• No port translation

• No new protocol

• Pods cannot move from a node to another and keep their IP address

• IP addresses don't have to be "portable" from a node to another (We can use e.g.

a subnet per node and use a simple routed topology)

• The specification is simple enough to allow many various implementations

Kubernetes network model: the good

@jpetazzo

• Everything can reach everything

• if you want security, you need to add network policies

• the network implementation that you use needs to support them

• There are literally dozens of implementations out there (15 are listed in the

Kubernetes documentation)

• It looks like you have a level 3 network, but it's only level 4 (The spec requires UDP

and TCP, but not port ranges or arbitrary IP packets)

• kube-proxy is on the data path when connecting to a pod or container, and it's not

particularly fast (relies on userland proxying or iptables)

Kubernetes network model: the less good

@jpetazzo

• Don't worry about the warning about kube-proxy performance

• Unless you:

• routinely saturate 10G network interfaces

• count packet rates in millions per second

• run high-traffic VOIP or gaming platforms

• do weird things that involve millions of simultaneous connections (in which

case you're already familiar with kernel tuning)

Kubernetes network model: kube-proxy

@jpetazzo

Conclusions

Thoughts from one of the creators of Kubernetes

Abstractions are NOT
a new thing,

It’s how CS evolved

BUT…

When you go too far up, abstraction-
wise, you run out of oxygen. Sometimes
smart thinkers just don’t know when to
stop, and they create these absurd, all-

encompassing, high-level pictures of the
universe that are all good and fine, but

don’t actually mean anything at all.

Architecture Astronauts

“

”2001, Joel Spolsky
Co-founder @stackoverflow @trello

(6) It is easier to move a problem around (for example,
by moving the problem to a different part of the overall
network architecture) than it is to solve it.

(6a) (corollary). It is always possible to add another
level of indirection.

RFC 1925
1 April 1996

“

”

We can solve any problem by introducing an extra
level of indirection.

FTSE
Fundamental Theorem of Software Engineering

“
”

The theorem is often expanded by the humorous clause
“…except for the problem of too many levels of indirection”

too many

Abstractions =
may create intrinsic

Complexity
issues of their own

Kubernetes on
Openstack

That’s all…

Links

• https://loige.co/from-bare-metal-to-serverless/

• https://hackernoon.com/why-the-fuss-about-serverless-4370b1596da0

• https://www.martinfowler.com/articles/serverless.html

• https://www.slideshare.net/randybias/the-history-of-pets-vs-cattle-and-using-it-properly

• https://www.slideshare.net/spnewman/what-is-this-cloud-native-thing-anyway

• https://www.slideshare.net/spnewman/confusion-in-the-land-of-the-serverless

• https://www.slideshare.net/JorgeMorales124/build-and-run-applications-in-a-dockerless-kubernetes-world

• https://medium.com/@adriaandejonge/moving-from-docker-to-rkt-310dc9aec938

• https://coreos.com/rkt/docs/latest/rkt-vs-other-projects.html

• https://www.slideshare.net/jpetazzo/anatomy-of-a-container-namespaces-cgroups-some-filesystem-magic-linuxcon

https://loige.co/from-bare-metal-to-serverless/
https://hackernoon.com/why-the-fuss-about-serverless-4370b1596da0
https://www.martinfowler.com/articles/serverless.html
https://www.slideshare.net/randybias/the-history-of-pets-vs-cattle-and-using-it-properly
https://www.slideshare.net/spnewman/what-is-this-cloud-native-thing-anyway
https://www.slideshare.net/spnewman/confusion-in-the-land-of-the-serverless
https://www.slideshare.net/JorgeMorales124/build-and-run-applications-in-a-dockerless-kubernetes-world
https://medium.com/@adriaandejonge/moving-from-docker-to-rkt-310dc9aec938
https://coreos.com/rkt/docs/latest/rkt-vs-other-projects.html
https://www.slideshare.net/jpetazzo/anatomy-of-a-container-namespaces-cgroups-some-filesystem-magic-linuxcon

